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Feynman path-representations for tunneling amplitudes for both integer and half-integer 
winding configurations are derived in the Schwinger model. A comparison with a perturba- 
tion treatment is made. 

1. INTRODUCTION 

The discovery of the instanton solution [ 11 had profound implications in the under- 
standing of the vacuum structure of gauge theories [2, 3, 41. It was found that when 
massless fermions are coupled to the gauge fields, the resulting vacuum structure 
closely resembles the one known to exist in the Schwinger model [5]. At first sight the 
correspondence is not perfect because in the Schwinger model we do not have any 
Higgs fields, which would be needed to support the Nielsen-Oleson vortex [6] (the 
instanton in two dimensional space time). However, one should remember that the 
fermions in the Schwinger model induce an effective Higgs mechanism in the sense 
that the current is proportional to the vector potential. On this basis heuristic argu- 
ments were given [7] to the effect that regular vortices do play a role in the Schwinger 
model. 

As has been shown by Nielsen and Schroer [8] the effective action in the Schwinger 
model obtained after integration of the fermion variables is rendered stationary by 
pairs of induced instantons-anti-instantons. These were shown to be responsible for the 
violation of the cluster property of correlation functions, thus implying a non trivial 
vacuum structure. 

In this paper, in section 2, we carry the work of Ref. [8] a step further by deriving 
explicit Feynman-path representations for amplitudes between different vacua 
(Tunneling amplitudes) as integrals over configurations with non-trivial winding. 
In section 3 we discuss the results of the previous section from a perturbative point 
of view, clarifying their relation to the general mechanism proposed by ‘t Hooft [2] 
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for massless fermions in the presence of winding fields. In section 4 we address our- 
selves to configurations with half-integer topological charge which play an important 
role in the confining property of the Schwinger model [9, IO]. 

2. FEYNMAN PATH REPRESENTATION FOR THE TUNNELING GREEN'S FUNCTIONS 

Although it is well known [8] that the vacuum structure in the Schwinger model, 
analyzed via clustering arguments, can be associated with induced instantons in this 
model, the Feynman path representation for the euclidean tunneling Green’s functions, 
i.e., 

G[“‘(x, v> = (n / KG) . . * $J@J$(Y~ .a. II;< ~-)n) I 0 3’ (2.1) 

have not been written down. In this section we arrive at such a representation starting 
from the functional integrals for zero winding as obtained as obtained by Schroer and 
Nielsen [8]. In what follows we shall use the euclidean Dirac matrices 

Yl = (i -i), 72 = (1 '), Y5 = (-' 1) 

and $ will stand for 4’. 
It will be convenient to introduce the chiral densities 

Jr(x) = N [ $ (qq 4](x), (2.2) 

As is well known from the operator solution [5], the chiral densities J+ and J- contain 
a spurion part which act as raising and lowering operators for the vacuum states 
I n), and only the products of fermion fields carrying chirality 2n will give rise to a 
non-vanishing matrix element in eq. (2.1). Introducing 

W; x, v) = (0 I J-6) ... J-&> #&) ... Mxn> 6A.d *. . $d~n) I 0) (2.3) 

since we know that 

we may extract in this limit the desired functional representation. 
Our starting point is the euclidean generating functional for a j 0) -+ I 0) transition 
in the presence of external (anticommuting c-number) sources 77 and ;1. In the Lorentz 
gauge we have, after integrating over the fermion fields 
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where the integration is done over transversal field configurations, %+[Ar] being short 
hand for L&4] 6(&4,). N and &[A] denote the usual normalization constant and 
free electromagnetic action respectively, and G(x, y; A) is the Greens function for 
the Dirac operator in an external field: 

$3 - ieA)G(x, y; A) = 2i2(x - y) 

For the Schwinger model, G(x, y; A) may be calculated explicitly, 

G(x, y; A) = &W)+(V)) G,(x - y) 

where G,(z) is the free Dirac Greens function, 4(x) is given by [B] 

and 

K4 = - 1 d2z D(x - W,A,(z) - iy5c,, a&(z)) 

D(x) = - -& In p2x2 

(2.6a) 

(2.6b) 

is the regulated zero-mass propagator. 
The (gauge invariant) functional determinant is also explicitely calculable in this 

model : 

Det i($ - ieA> = exp ] - & 1 d2x A, (S,, - -f&) A”/. (2.7) 

From the generating functional (2.5) one obtains all non-tunneling fermion Greens 
functions by functional differentiation with respect to the sources. In particular, for 
the Green function (2.3) one has 

9(& x, y) = N J cqA[T”l] e-r-sq~; x, y; A) (2.8a) 

where the integration is done over zero-winding (transversal) fields, 

l- = & j- d2x A,(z) A,(z) (2.8b) 

is the logarithm of the determinant (2.7) (in the Schwinger gauge), 

So = - ; j- d2z A,(z) CM,(z) (2.8~) 

is the free electromagnetic action, and 9(f; x, y; A) is the external field Greens 
function corresponding to (2.3); it is given as a product of the two-point Greens 
functions above and has the form 

9@, x, y; A) = e-@(E-s*r) G&; x, y) (2.8d) 
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where 

@((; x, y) = -e 1 d2z i (2D(f, - z) - D(xi - z) - D(yi - z)) l A, a,A,(z). 
id 

(2.8e) 
A convenient representation for G,(t; x, u) is given by 

G,Gf; ~9 Y) = (&)“” g 
(Si - Ck,)(Xi - xkc)+(Yi - Yk:>- 

ll (tj - Xk)+ II (4j - Yk)- 
(2.9) 

where, typically 
i,k j,k 

x* = ix, - ix, 

As was shown in Ref. [9], the effective action in (2.8) is minimized by the (transversal) 
field configuration 

where 

A;‘(z) = c EA, $ ,n F; @9TEi - z) - qx, - z) - qy, - z)) (2.10) A 
z 

9(z) = D(z) - d(z) 

and d(z) is the euclidean propagator with a mass e2/7r. The configuration (2n/e) 
Ed, a, 3(5 - z) is an extended regular vortex with topological number - 1 (induced 
instanton) peaked around z = [, where 5 is the variable that will be taken to infinity. 

Expression (2.10) suggests making the following splitting of A, in eq. (2.5), 

where the new integration variable ,4:] carries winding number n and has vanishing 
overlap with the extended vortex in the limit of large f. Introducing (2.11) into eq. 
(2.8) and taking the limit 5 --t co, we find 

where 

(2.12) 

S; = - ; 1 d2z &l(z) OAF](Z). (2.13) 

In estimating @(<; x, y) we find, 

+ 277- c wzk - -Xi) + Wfk - Vi)) - 47r c qtk - &) 
k.i k,i 

(@Xi - Z) + D(y, - z)) EA,~,sAF’(z) 
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Since the integral multiplying the logarithm gives the topological number of API, we 
have in the limit, 

@G? x, u> -+ -2nZ In $t2 - 47r C L@(& - &) + @‘(x, JJ) (2.14) 
k.i 

where @‘(x, JJ) is @, reduced to the variables x, y: 

@‘(x, y) = --e j d2z i @(xi - z) + D(y, - z)) l &Ap’(z) 
i=l 

(2.15) 

In order to control the large &limit of T it is convenient to split A$] into any given 
vortex with winding number n and a remainder a, carrying zero winding: 

We find, 

where 

r --f n In p2t2 * e 
I 

d2z 
X chrrahAfl 

- 27r j d2z C 9(& - z) IJ~([, - z) + l’ 
j.k 

(2.16) 

j- d2z(AF1(z) A!‘(z) - (+)’ a,( V(z) 3, V(z))) (2.17) 

Observe that the second term in the integrand of r’ only depends on the asymptotic 
behaviours of V and ensures that the integral is finite. As will become clear in the 
following section, the subtraction term plays the role of omitting the zero eigen- 
values in the fermion-determinant in the presence of winding potentials. 

Adding the contributions for So, @ and F, the resulting expression can be cast 
into the form, 

So + CD + r = -n2 In r*2$ - 2n&(O) - 47r C B(ej - Sk) + Si + CD’ + r 
Kk 

(2.18) 

Using the definition of LB(z) and expression (2.9), we obtain upon substitution into 
(2.f9, 

3(f; 4 7) -&? 
N (2)“” e2nn~(0)e-4a~,<kd(e,-%) 

- Xk)+ n /-@j - yk)- (2*1g) 
i<k 
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Recognizing that the &dependent factor in(2.19) just corresponds to thetdependent 
matrix element in formula (2.4) as calculated using the explicit operator solution [.5], 
we finally arrive at 

The x, y dependence of the integrand in (2.20) is precisely the one expected from the 
general ‘t Hooft mechanism [2] for the cancellation of the zeroes of the determinant, 
resulting in products of the zero-energy fermion eigenfunctions. This point will be 
clarified in the following section. 

The kinematic factor in eq. (2.20) is readily identified with the product over eigen- 
states of angular momentum, and corresponds to the fact, that for any given winding 
n we have n independent zero-energy bound states (this follows from the Atiyah-Singer 
theorem [l 11) with angular momentum up to II - 1. 

The amplitude (2.20) contains the minimal number of fields needed to give a non- 
vanishing result in the ] 0) to ] n) transition because of the chiral selection rule. By 
following the above procedure, one readily finds the Feynman path representation in 
the general case: 

where Si and r’ are the same as in eqs. (2.13) and (2.17), and 

@‘(x, y; x’, y’) = @‘(x, y) - @‘(XI, y’) 

with @‘(x, u) given by eq. (2.15). 
The case of negative winding numbers is obtained from eq. (2.21) by the simple 

replacements 1 +-+ 2 and z+ t) z- . The structure of (2.21) becomes p&cu]ar]y 

translucent for y1 = il, where it can be cast into the form, 

= N (6) J q&ll] e-r’-%-@‘(r*~) 

(2.22) 
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where G,,(X) is the free, massless fermion Green’s function, and @’ takes the form, 

@‘(x9 VI = 6-T c 1 d2Zry:piD(Xi - z) + &3,D(yi - z)] E&4p’(Z) * 
Thus, the net effect in going from winding zero to winding & 1 consists in replacing one 
GO by the projector a(1 F r5). 

Finally we observe that, as expected from the work of Nielsen and Schroer [8], the 
effective action P’ + ,Sh + @’ is minimized by an “induced instanton” carrying 
winding number n. Furthermore, since this effective action is quadratic in the fields, 
the stationary phase contribution gives the exact result. 

3. COMPARISON WITH PERTURBATION THEORY 

We find it instructive to rederive’our previous results from a perturbative point of 
view which will throw some light on the connection between the various factors 
appearing in our functional representation for non-trivial winding, and the structure 
provided by the general ‘t Hooft mechanism [2]. In order to keep the discussion as 
simple as possible we shall only consider the two-point function for winding number 
one, in lowest order perturbation theory. 

In four-dimensional non-abelian gauge theories such a perturbative treatment 
would consist in expanding the classical gauge field configuration around the instan- 
ton [2]. In the Schwinger model, where there exist no finite action, non-trivial solutions 
to the pure gauge part, one will have to expand around any given configuration V, 
carrying winding number one 

with 

We then have, 

where 

We will expand the fermion fields in terms of a suitable basis. Since the spectrum of 
the Dirac operator P, with respect to the usual measure is continuous, we find it 
useful to introduce as a basis the eigenfunction c,& of b, orthonormal with respect to a 
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suitable measure fR(z), which renders the spectrum discrete and has the property 
p,(z)+ I as R-- CG: 

a42 = bR& 

i 
d% pR(z) &(z) &(z) = 6,.,., 

A convenient choice could be ~~(2) = (1 + ?-/R2)-l, corresponding to the compactifi- 
cation of euclidean space into a sphere of radius R [ 11, 121. 

In terms of the eigenfunctions 4,: we find, 

f e [ +o(x), Bo(yjB / d”; tr[G’k z) C(z)1 

i- J‘ d2z(C’(x, =I P(z) +,(z))ti &,(.t’h 

+ 4o(x), 1 d24$o(z) B(z) G’(,-3 .v>h, 

- (j- d2z &y(z) C(z) #o(d) G'Cx. ~,ae]j + W2) (3.1) 

where hi”) are the eigenvalues of the free Dirac equation; $,(x), is the zero energy 
eigenstate of fi (A, = 0) and, up to normalization. is independent of PR: 

and 

qbo(x) = Jr/-j/” 
exp e 

i IS 

d’z D(s - 2) c,,,Z,,V>](z) 
i) 

(3.2) 
0 

G&(X, Y) = c 9k(4or Bk( Yh A, (3.3) 
k#O I, 

One recognizes at once in the combination nk+o X,~$,(x),$,(y), the ‘t Hooft mechan- 
ism for massless fermions in the presence of the winding configuration Vr]. The 
non-vanishing of the amplitude (3.1) is guaranteed by the fact that S,[ P+l] is finite. 

We now show that the first-order terms in eq. (3.1) correspond to the lowest order 
corrections to the fermion determinant and zero-energy wave functions, in accordance 
with the result of the previous section. The function G’(.Y, JJ) satisfies 

P)aG’(x, Y) = 6(x - u) - PRW 40(x) Bo( Y) 

The normalization factor Jvk in (3.2) goes to zero when R + co, corresponding to 
the absence of bound states of the Dirac equation with respect to the unit measure. 
Hence G’(x, v) becomes identical in this limit with the usual Green’s function, 

G(x, y) = exp I--# I d2z(D(x - z) - D(y - z)) ~~,i’,V~~(z)/ + G,(x - y). 

(3.4) 
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with 

e2(s - m2 - ni2) Oc 
XoE :z - 

2p(s)‘/2 r V(b, z) dz 
- oc 

(34a) 

e4(m + m’) a X2E E 
i 2p(s)l’2 -Q 

V(b, z) dz, xlE = - (’ - n;;+ (1 + b $) x2”, 

and V(!J, z) as in Eq. (30b). 
In the infrared limit we have now, in contrast with the scalar-scalar case, a non- 

vanishing first order correction 

Lt ME = -e2[y x y] exp{ -iTE(2Ec - ln( -t/X2))] 
h-0 

1 
x I 1 r(l--i7)E) ez(m + m’) r(; - i7.J 

i Ql + iTE) - + 8(s - n72 - m’2) o”2 xy$qFq ’ I Pa) 

where 

77E = e2(s - m2 - m’“) 
8Trps~l2 ) Wb) 

and EC, as before, is the Euler’s constant. The second term in the square bracket in 
Eq. (35a) is of O(m(-t)‘/“/s) relative to the first and hence, according to Eq. (26), a 
bonafide first order correction. It may be observed that for fermion-antifermion 
scattering rE changes sign and the poles of the r-functions in (35a) appear on the 
physical sheet. Whereas the poles of P(l - in) in the leading term may be related 
to Coulomb bound states [18] those of r($ - iq6) in the second term do not have 
such analogues. It should, however, be pointed out that in the neighbourhood of 
these poles the eikonal phase provide extra powers (positive integral or half-integral) 
of t and our amplitude ceases to be singular at t = 0. In the neighbourhood of these 
poles the terms ignored in eikonal approximation is just as important as the leading 
term in Eq. (35a) and the bonafide of the poles is, therefore, an open question. The 
correction term in (35a) has also been obtained recently by Bazhanov et al. [19] by 
dispersion theoretic method. The static limit (m’ + cc, say) of (35) gives the Coulomb 
amplitude [20] for a relativistic Dirac particle. 

IV. FIXED ANGLE BEHAVIOUR 

4.1. Leading Infrared Behaviour 

All the infrared scalings appropriate for the fixed angle domain (s, / t 1, m2 3 AZ) 

have been obtained in sect. II. There we learnt that the leading infrared divergence of a 
diagram with exchanged mesons is built up of contributions from the leading meson 

595!117/2-15 
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out, however, that one can still extract the tunneling amplitudes from S(y, ; X, y) in 
the limit that y1 -+ 00. To show this, it is convenient to write the #-field in bosonized 
form (up to a Klein transformation) 

(4.1) 

where 7 and 4 are infrared regularized massless fields, 7 is quantized with the opposite 
sign in the commutation relations, 2 is a free pseudoscalar field of mass ez/n and 
6, is a spurion whose sole purpose is to carry the fermionic selection rules.2 

The vacuum states of the theory are known to be 

I II l,n,> = q%~[O>. 

Using the operator solution (4.1), we explicitely verify (with y1 = t) that 

id+ 
! jZX! (g31/4 

___ W; x, Y) = (0 / $2 I 1, WY, 0 I G(Y) ... KG) i O\ 

Expressing S(f; x. y) as a Feynman-path integral, we arrive at 

C 1 T 0 1 4&h) . . . &,,(Y,) $~~(-4 . vL,(xJ i 0‘) 

(4.2) 

(4.3) 

where 

The effective action in (4.3) is minimized by a configuration carrying a half-unit of 
topological charge. For instance, for n = I, we have 

The fact that pairs of such configurations saturate the two-point function, was 

tation, which is geared to canonical fields, for amplitudes involving 4. Indeed, in the transverse 
gauge, in which we have been working, A, L = 0 we are certainly not going to reproduce the well , 
known amplitudes involving $ via a path integral. By contrast in the operator solution, although A,, 
in the Schwinger gauge is transversal, it nevertheless has a massless part which can be identified 
with AuL. On the other hand, to work with a Mandelstam field, where the full A, appears in the line 
integrals. is inappropriate, since this field is ill-defined in the Schwinger model. 

* In previous works [lo, 131 the exponentials of + themselves were the carriers of the selection rules, 
which here we choose to make explicit by means of 6. 
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already noted by Nielsen and Schroer [9]. Here we have been able to isolate the 
individual contributions which play with respect to the half-integer gauge classes 
introduced in [IO] the same role, as the instanton does with respect to the integer 
gauge classes. 

5. CONCLUSIONS 

In this work we have used clustering and generalized clustering arguments to 
derive, starting from the functional representations of Nielsen and Schroer for winding 
number zero, Feynman-path integrals for tunneling amplitudes involving integer and 
half-integer winding configurations. 

We also exibited the relation between the path-integrals with integer winding 
configurations thus obtained and the general form expected on the basis of ‘t Hooft’s 
mechanism for fermions in the presence of winding fields. 

After the completion of this work we became aware of B. Schroer’s Schladming 
lectures where path integral representations over non-trivial winding are also written 
down. 
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